Robust approach for color image quality assessment

نویسندگان

  • Patrick Le Callet
  • Dominique Barba
چکیده

This paper presents a visual color image quality metric assessment with full reference image. The metric is highly based on human visual system properties in order to get the best correspondence with human judgements. Contrary to some others objective criteria, it doesn’t use any a priori knowledge on the type of introduced degradations. So the main interest of the metric is on its ability to produce robust results independently of the distortions. The metric can be decomposed into two steps. The first one projects each images, the reference one and the distorted one, in a perceptual space. The second step achieves the pooling of errors between perceptual representation of two images in order to get a score for the overall quality. Since we have shown that these two steps have equivalent importance regarding metric performance, we have particularly paid attention in correct balancing when designing the two steps. Especially, for the second one, that is generally limited to poor consideration in literature, we have developed some new original approaches . We compare results of the metric with human judgments on images distorted with different compression schemes. High performances are obtained leading to assure that the metric is robust, so this approach constitutes an alternative useful tool to PSNR for image quality assessment.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Robust SAR NLFM Waveform Selection Based on the Total Quality Assessment Techniques

Design, simulation and optimal selection of cosine-linear frequency modulation waveform (CNLFM) based on correlated ambiguity function (AF) method for the purpose of Synthetic Aperture Radar (SAR) is done in this article. The selected optimum CNLFM waveform in contribution with other waveforms are applied directly into a SAR image formation algorithm (IFA) and their quality effects performance ...

متن کامل

Robust Method for E-Maximization and Hierarchical Clustering of Image Classification

We developed a new semi-supervised EM-like algorithm that is given the set of objects present in eachtraining image, but does not know which regions correspond to which objects. We have tested thealgorithm on a dataset of 860 hand-labeled color images using only color and texture features, and theresults show that our EM variant is able to break the symmetry in the initial solution. We compared...

متن کامل

Robust Potato Color Image Segmentation using Adaptive Fuzzy Inference System

Potato image segmentation is an important part of image-based potato defect detection. This paper presents a robust potato color image segmentation through a combination of a fuzzy rule based system, an image thresholding based on Genetic Algorithm (GA) optimization and morphological operators. The proposed potato color image segmentation is robust against variation of background, distance and ...

متن کامل

Reduced-Reference Image Quality Assessment based on saliency region extraction

In this paper, a novel saliency theory based RR-IQA metric is introduced. As the human visual system is sensitive to the salient region, evaluating the image quality based on the salient region could increase the accuracy of the algorithm. In order to extract the salient regions, we use blob decomposition (BD) tool as a texture component descriptor. A new method for blob decomposition is propos...

متن کامل

Quality Assessment of Turfgrasses Using NTEP Method Compared to an Image-Based Scoring System

The current methods of turfgrass evaluations are often based on human-based assessment methods. However, eliminating subjective errors from such evaluations is often impossible. This research compared the accuracy of human-based and digital image processing-based methods for quality assessment of turfgrasses. Four turfgrass plots were evaluated using the two mentioned methods. In the human-base...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003